Quick review

- All types of chemical bonds involve electrons
- Valence electrons, the electrons in the <u>outermost occupied energy level</u> of an atom, are usually the electrons involved in bonding

 The representative elements have the same number of valence electrons as their family number in the American system

–Example: Mg, column IIA, 2 valence electrons

 The transition metals all have two valence electrons

 \Rightarrow ns²(n-1)d^x

- Lewis dot structures are used to represent the valence electrons
 - –each dot represents a valence electron
 - –no more than 8 dots total
 - -no more than 2 dots on a side
 - -example = Mg: Na[.]

Lewis dot structures of representative elements

	1								18	
1	н.	2		13	14	15	16	17	He:	
2	Li [.]	Be		·B·	.ċ.	٠Ņ:	.ö:	:F:	:Ne:	
3	Na [.]	Мg [.]	Δ	۰Åŀ	۰. Si.	٠P:	.P: .S:		:Är:	
4	K.	Ċa	_ /	∙Ġa [.]	•Ġe•	٠Ås:	۰. Se:	:Br:	:Kr:	
5	Rb [.]	Śr [.]		۰. in	۰Śņ۰	۰Sþ:	۰Te:	:i:	:Xe:	
6	Cs.	Ba		۰it	·Pb.	۰Bi:	• •Po:		:Rn:	

- Atoms that lose electrons easily have little attraction for additional electrons (and vice versa)
 - -metals have low IE, low EA
 - -Nonmetals have high IE, high EA

The Octet Rule

- Atoms of representative elements tend to gain, lose, or share electrons until they achieve an ns²np⁶ valence configuration
- Losing or gaining more than that would require too much energy
- "Isoelectronic" with noble gas
- "pseudonoble gas"

Electron Configuration of Ions

 $Na \Rightarrow 1s^22s^22p^63s^1$

- Lose one electron...
- $Na^+ \Rightarrow 1s^22s^22p^6$
- Lose two?
- $Na^{2+} \Rightarrow 1s^2 2s^2 2p^5$
- <u>NOT LIKELY</u>!!
- Why not?
- The 2p electrons are held more tightly!
 - Closer to nucleus
 - Larger effective nuclear charge

Electron Configuration of Ions

- $S \Longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^4$
- Large effective nuclear charge (~ +4)
- Attracts electrons strongly

gain 2 e-

• $S^{2-} \Rightarrow 1s^22s^22p^63s^23p^6$

gain 3?

- NOT LIKELY!
- Third e- would go on an entirely new E level (4s¹)

Most likely ionic charge

- 1A = 1+
- 2A = 2+
- 3A = 3+
- 4A = +/- 4
 - Covalent bonding
 more likely for ↓Z

- 5A = 3-
- 6A = 2-
- 7A = 1-
- Note: H can form 1+ ions or 1- ions (H¹⁻ = hydride ion)

Basic idea...

- All chemical bonds form because they result in lower energy for the atoms involved
- lower energy = greater stability

Ionic Bonding

- Metals lose electrons easily, nonmetals have a strong attraction for more electrons
- metal atoms will lose electrons to nonmetal atoms, causing both to become ions

	Done Star Walle																
1A															8A		
1																	2
H																	He
1.008	2A											3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg							8B				A1	Si	Р	S	C1	Ar
23.00	24.31	3B	4B	5B	6B	7B				1B	2B	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	Y	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	39.10 40.08 44.96 47.90 50.94 52.00 54.94 55.85 58.93 58.70 63.55 65.38 69.72 72.59 74.92 78.96 79.90 83.8													83.80			
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pđ	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107		109									
Fr	Ra	Ac	Rf	Ha	Unh	Uns		Une									
(223)	226.0	227.0	(261)	(262)	(263)	(262)		(267)									
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides			Ce	Pr	Nđ	Pm	\mathbf{Sm}	Eu	Gđ	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

- Blue = metals
- Pink = semi-metallics (metalloids)
- Yellow = nonmetals

- 1. Metals, having lost one or more electrons, become cations (+)
- 2. Nonmetals, having gained one or more electrons, become anions (-)
- Opposites attract: the cations and anions are held together electrostaticly

– called "ionic bonds"

In summary...

 Ionic bonds are electrostatic attractions between cations and anions formed when electron(s) are transferred from the low IE, EA metal to the high IE, EA nonmetal